Arc-length-based Lyapunov tests for convergence and stability with applications to systems having a continuum of equilibria

نویسندگان

  • Sanjay P. Bhat
  • Dennis S. Bernstein
چکیده

In this paper, fundamental relationships are established between convergence of solutions, stability of equilibria, and arc length of orbits. More specifically, it is shown that a system is convergent if all of its orbits have finite arc length, while an equilibrium is Lyapunov stable if the arc length (considered as a function of the initial condition) is continuous at the equilibrium, and semistable if the arc length is continuous in a neighborhood of the equilibrium. Next, arc-length-based Lyapunov tests are derived for convergence and stability. These tests do not require the Lyapunov function to be positive definite. Instead, these results involve an inequality relating the right-hand side of the differential equation and the Lyapunov function derivative. This inequality makes it possible to deduce properties of the arc length function and thus leads to sufficient conditions for convergence and stability. Finally, it is shown that the converses of all the main results hold under additional assumptions. Examples are included to illustrate how our results are particularly suited for analyzing stability of systems having a continuum of equilibria.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nontangency-Based Lyapunov Tests for Convergence and Stability in Systems Having a Continuum of Equilibria

This paper focuses on the stability analysis of systems having a continuum of equilibria. Two notions that are of particular relevance to such systems are convergence and semistability. Convergence is the property whereby every solution converges to a limit point that may depend on the initial condition. Semistability is the additional requirement that all solutions converge to limit points tha...

متن کامل

A Higher Order Online Lyapunov-Based Emotional Learning for Rough-Neural Identifiers

o enhance the performances of rough-neural networks (R-NNs) in the system identification‎, ‎on the base of emotional learning‎, ‎a new stable learning algorithm is developed for them‎. ‎This algorithm facilitates the error convergence by increasing the memory depth of R-NNs‎. ‎To this end‎, ‎an emotional signal as a linear combination of identification error and its differences is used to achie...

متن کامل

DYNAMIC COMPLEXITY OF A THREE SPECIES COMPETITIVE FOOD CHAIN MODEL WITH INTER AND INTRA SPECIFIC COMPETITIONS

The present article deals with the inter specific competition and intra-specific competition among predator populations of a prey-dependent three component food chain model consisting of two competitive predator sharing one prey species as their food. The behaviour of the system near the biologically feasible equilibria is thoroughly analyzed. Boundedness and dissipativeness of the system are e...

متن کامل

Fuzzy Lyapunov stability and exponential stability in control ‎systems‎

Fuzzy control systems have had various applications in a wide range of science and engineering in recent years. Since an unstable control system is typically useless and potentially dangerous, stability is the most important requirement for any control system (including fuzzy control system). Conceptually, there are two types of stability for control systems: Lyapunov stability (a special case ...

متن کامل

Global Stabilization of Attitude Dynamics: SDRE-based Control Laws

The State-Dependant Riccati Equation method has been frequently used to design suboptimal controllers applied to nonlinear dynamic systems. Different methods for local stability analysis of SDRE controlled systems of order greater than two such as the attitude dynamics of a general rigid body have been extended in literature; however, it is still difficult to show global stability properties of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • MCSS

دوره 22  شماره 

صفحات  -

تاریخ انتشار 2010